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Reinitialization-Free Level Set Evolution
via Reaction Diffusion
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Abstract— This paper presents a novel reaction-diffusion (RD)
method for implicit active contours that is completely free of
the costly reinitialization procedure in level set evolution (LSE).
A diffusion term is introduced into LSE, resulting in an RD-
LSE equation, from which a piecewise constant solution can be
derived. In order to obtain a stable numerical solution from
the RD-based LSE, we propose a two-step splitting method to
iteratively solve the RD-LSE equation, where we first iterate the
LSE equation, then solve the diffusion equation. The second step
regularizes the level set function obtained in the first step to
ensure stability, and thus the complex and costly reinitialization
procedure is completely eliminated from LSE. By successfully
applying diffusion to LSE, the RD-LSE model is stable by means
of the simple finite difference method, which is very easy to
implement. The proposed RD method can be generalized to
solve the LSE for both variational level set method and partial
differential equation-based level set method. The RD-LSE method
shows very good performance on boundary antileakage. The
extensive and promising experimental results on synthetic and
real images validate the effectiveness of the proposed RD-LSE
approach.

Index Terms— Active contours, image segmentation, level set,
partial differential equation (PDE), reaction-diffusion, variational
method.

I. INTRODUCTION

N THE past two decades, active contour models (ACMs,

also called snakes or deformable models) [1] have been
widely used in image processing and computer vision applica-
tions, especially for image segmentation [2]-[14]. The original
ACM proposed by Kass et al. [1] moves the explicit parametric
curves to extract objects in images. However, the parametric
ACM has some intrinsic drawbacks, such as its difficulty in
handling topological changes and its dependency of parameter-
ization [15]. The level set method later proposed by Osher and
Sethian [15] implicitly represents the curve by the zero level
of a high dimensional function, and it significantly improves
ACM by being free of these drawbacks [2], [15], [17].

The level set methods (LSM) can be categorized into partial
differential equation (PDE) based ones [18] and variational
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ones [3]. The level set evolution (LSE) of PDE-based LSM
is directly derived from the geometric consideration of the
motion equations [19], which can be used to implement most
of the parametric ACMs, such as Kass et al.’s snakes [1],
region competition snakes [4], and geodesic active contours
[2], etc. The LSE of variational LSM is derived via minimizing
a certain energy functional defined on the level set [3], such as
Chan-Vese ACM [7], Vese and Chan’s piecewise smoothing
ACM [11], local binary fitting ACM [8], [10], etc. Moreover,
the variational LSM can be easily converted into PDE-based
LSM by changing slightly the LSE equation while keeping the
final steady state solution unchanged [20].

In implementing the traditional LSMs [17], [2], [18], [21],
[7], the upwind schemes are often used to keep numerical
stability, and the level set function (LSF) is initialized to
be a signed distance function (SDF). Since the LSF often
becomes very flat or steep near the zero level set in the LSE
process and this will affect much the numerical stability [18],
[22], a remedy procedure called re-initialization is applied
periodically to enforce the degraded LSF being an SDF [22].
The first re-initialization method was proposed by Chopp
[23] and it directly computes the SDF. However, this method
is very time-consuming. In [23], Chopp also proposed a more
efficient method by restricting the front movement and the
re-initialization within a band of points near the zero level set.
However, it is difficult to locate and discretize the interface
by Chopp’s methods [21]. The method proposed by Sussman
et al. [22] iteratively solves a re-initialization equation.
Nonetheless, when the LSF is far away from an SDF, this
method fails to yield a desirable SDF. The re-initialization
method in [18] addresses this problem by using a new signed
function, but it will shift the interface to some degree [21]. In
order to make the interface stationary during re-initialization,
a specific method for the two-phase incompressible flow was
proposed in [24], which focuses on preserving the amount of
material in each cell. The method in [25] uses a true upwind
discretization near the interface to make the interface local-
ization accurate, and it can keep the interface stationary. All
the above mentioned re-initialization methods, however, have
the risk of preventing new zero contours from emerging [26],
which may cause undesirable results for image segmentation,
such as failures to detecting the interior boundary.

In recent years, some variational level set formulations [3],
[9], [14] have been proposed to regularize the LSF during
evolution, and hence the re-initialization procedure can be
eliminated. These variational LSMs without re-initialization
have many advantages over the traditional methods
[17], [2], [18], [21], [7], including higher efficiency and easier
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implementation, etc [3]. Some global minimization methods
[27], [28] eliminate the re-initialization procedure by
combining the total variational model with the Chan-Vese
model [7] or the Vese-Chan’s piecewise smoothing model
[11]. However, these global minimization methods [27], [28]
can only be applied to some variational LSF with specific
forms.

In this paper we propose a new LSM, namely the reaction-
diffusion (RD) method, which is completely free of the costly
re-initialization procedure. The RD equation was originally
used to model the chemical mechanism of animal coats [29].
It includes two processes: reaction, in which the substances
are transformed into each other, and diffusion, which causes
the substances to spread out over a surface in space. The RD
equation was also used to describe the dynamic process in
fields such as texture analysis [30]-[32], natural image mod-
eling [33] and phase transition modeling [34], [35]-[38], [39].
In particular, the RD equation in phase transition modeling is
based on the Van der Waals-Cahn-Hilliard theory [36], which
is widely used in mechanics for stability analysis of systems
with unstable components (e.g., density distributions of a fluid
confined to a container [39]). It has been proved that the stable
configurations of the components are piecewise constant in the
whole domain, and the interfaces between the segmented areas
have minimal length [34], [36]. These conclusions have been
used in image classification with promising results [40]. How-
ever, the phase transition method cannot be directly applied to
image segmentation because of the inaccurate representation
of interface and the stiff parameter e linits RD equation [26].

The joint use of phase transition and LSM has been briefly
discussed in [41]. However, [41] aims to apply the curvature-
related flow in phase transition to analyze the evolution
driven by the curvature based force. In fact, the curvature
motion based on the phase transition theory has been widely
studied [42], [5], [6], [43]-[46]. For example, the classical
Merriman-Bence-Osher (MBO) algorithm [42] applies a linear
diffusion process to a binary function to generate the mean
curvature motion with a small time step; the methods in [5],
[43]-[46] convolve a compactly supported Gaussian kernel
(or an arbitrary positive radically symmetric kernel) with a
binary function to generate similar motion (often called the
convolution-generated curvature motion).

Motivated by the RD based phase transition theory [37],
we propose to introduce a diffusion term into the conventional
LSE equation, constructing an RD-LSE equation to combine
the merits of phase transition and LSM. We present the unique
and stable equilibrium solution of RD-LSE based on the
Van der Waals-Cahn-Hilliard theory, and give the accurate
representation of interface. The re-initialization procedure is
completely eliminated from the proposed RD-LSM owe to
the regularization of the diffusion term. A two-step splitting
method (TSSM) is proposed to iteratively solve the RD
equation in order to eliminate the side effect of the stiff
parameter ¢!, In the first step of TSSM, the LSE equation
is iterated, while in the second step the diffusion equation is
solved, ensuring the smoothness of the LSF so that the costly
re-initialization procedure is not necessary at all. Though the
diffusion method has been widely used in image processing,

to the best of our knowledge, our work is the first one to
apply diffusion to LSE, making it re-initialization free with
a solid theoretical analysis under the RD framework. One
salient advantage of the proposed method is that it can be
generalized to a unified framework whose LSE equation can be
either PDE-based ones or variational ones. Another advantage
of RD-LSE is its higher boundary anti-leakage and anti-
noise capability compared with state-of-the-art methods [3],
[9], [14]. In addition, due to the diffusion term, the LSE
formulation in our method can be simply implemented by
finite difference scheme instead of the upwind scheme used in
traditional LSMs [2], [18], [21], [7]. The proposed RD-LSE
method is applied to representative ACMs such as geodesic
active contours (GAC) [2] and Chan-Vese (CV) active contours
[7]. The results are very promising, validating the effectiveness
of RD-LSE.

The rest of the paper is organized as follows. Section II
introduces the background and related works. Section III
presents the RD-LSM. Section IV implements RD-LSM, and
analyzes the consistency between theory and implementation.
Section V presents experimental results and Section VI con-
cludes the paper.

II. BACKGROUND AND RELATED WORKS
A. Level Set Method

Consider a closed parameterized planar curve or surface,
denoted by C(p,t):[0,1]xRT — R", where n = 2 is for
planar curve and n = 3 is for surface, and ¢ is the artificial
time generated by the movement of the initial curve or surface
Co(p) in its inward normal direction N. The curve or surface
evolution equation is as follows

C,=FN
C(p,t =0) = Co(p)

where F is the force function [21]. For parametric ACMs [1],
[2], [4], we can use the Lagrangian approach to getting the
above evolution equation and solve it iteratively. However,
the intrinsic drawback of iteratively solving Eq. (1) lies in
its difficulty to handle topological changes of the moving
front, such as splitting and merging [15]. This problem can
be avoided by using the LSM [15]. Consider a closed moving
front C(#) = xe R", which is represented by the zero level
set of an LSF ¢(x, 1), i.e., C(t) = {x|¢(C(¢),t) = 0}. Since
¢(C(1),t) = 0, we can take the derivative w.r.t time ¢ on both
sides, yielding the following equation

ey

{¢1+v¢-c,=¢,+v¢-m\7=0 @
¢(x, 1 =0) = go(x)
where gradient operator V(-) £ (8(-)/dx1, 8(:)/dx2, ..., d()/

9x,), and ¢o(x) is the initial LSF Co(p) = {x|¢o(x) = 0}.
Since the inward normal can be represented as N =
—V¢/IVe| [15], [17], [19], Eq. (2) can be re-written as

[¢, = F|V¢|
P(x,t = 0) = ¢p(x)

In traditional LSMs [17], [2], [21], F 1is often written
as F = akx+F), where k = div(V@/|V¢|) is the curvature

3)
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(the divergence operator is defined as div(T/)) 2

> 0vi/ox; with V = (v1,02,...,0p), a is a fixed para-
meter, and the remaining term F] can be a constant [17], [21].

Eq. (3) is the LSE equation of PDE-based LSMs [15], [2],
[21], [5], and it is derived from the geometric consideration of
the motion equation [19]. In variational LSMs [20], [3], [7],
[8], [10], [11], the LSE equation is

H b = —Es() = FO@) @
¢(x,1=0) = ¢o(x)
where Ey (¢) denotes the Gateaux derivative (or first variation)
[47] of an energy functional E(¢), o(¢) is the Dirac functional,
and F has the form as defined in Eq. (3).

In implementing traditional LSMs [17], [2], [18], [21], [7],
the term F7 in the force function F of Eq. (3) or Eq. (4)
is usually approximated by using the upwind scheme, while
the remaining can be approximated by the simple central
difference scheme [17], [48]. During evolution, the LSF may
become too flat or too steep near the zero level set, causing
serious numerical errors. Therefore, a procedure called re-
initialization [20], [18], [21], [22] is periodically employed
to reshape it to be an SDF.

B. Re-initialization [20], [18], [21], [22] Versus Without
Re-initialization [3], [9], [14]

1) Re-Initialization: In [15], Osher and Sethian proposed to
initialize the LSF as ¢(x) = 1 £dist3(x), where dist(-) is a dis-
tance function and “+£” denotes the signs inside and outside the
contour. Later, Mulder et al. [49] initialized the LSF as ¢(x) =
+dist(x), which is an SDF that can result in accurate numerical
solutions. However, in evolution the LSF can become too
steep or flat near the contour, leading to serious numerical
errors. In order to reduce numerical errors, Chopp [23] period-
ically re-initialized the LSF to be an SDF. Unfortunately, this
re-initialization method straightforwardly computes the SDF
in the whole domain and it is very time-consuming. Chopp
also proposed [23] to restrict the re-initialization to a band of
points close to the zero level set. Such a narrow band method
[18], [50] can reduce the computational complexity to some
extent.

Many lately developed re-initialization methods do not
directly compute the SDF [20], [18], [21], [22] since the
solution of |V¢| = 1 is itself an SDF [51]. In [22], the
following re-initialization equation was proposed

¢1 + S(¢0)(IVpl — 1) =0 )

where S(¢o) 2 $o/+/ 5 + (Ax)2, ¢o is the initial LSF and Ax
is the spatial step. Unfortunately, if the initial LSF ¢ deviates
much from an SDF, Eq. (5) will fail to yield a desirable final
SDF [18], [25]. This problem can be alleviated by modifying
S(-) as S () 2 b/ d* + [V$2(Ax)? [18]. However, this
method will shift the interface from its original position [21].
Some methods were then proposed to make the interface
remain stationary during re-initialization. For example, [24]
is specific to the two-phase incompressible flow by preserving
the amount of material in each cell, while [25] uses a true
upwind discretization in the neighborhood of the interface
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Fig. 1.

(a) Different diffusion rates. (b) Profiles of the two commonly used
Dirac functionals, 61, , and 67 .

to achieve the accurate interface localization and keep the
interface stationary.

In summary, re-initialization has many problems, such as the
expensive computational cost, blocking the emerging of new
contours [6], failures when the LSF deviates much from an
SDF, and inconsistency between theory and implementation
[52]. Therefore, some formulations have been proposed to
regularize the variational LSF to eliminate the re-initialization
procedure [3], [14], [9].

2) Distance Regularized Level Set Evolution (DRLSE) [3],
[14], [9]: In [3], Li et al. proposed a signed distance penal-
izing energy functional:

P@ = [ (V41 1lx ©

Eq. (6) measures the closeness between an LSF ¢ and an SDF
in the domain Q C R", n = 2 or 3. By calculus of variation
[47], the gradient flow of P(¢) is obtained as

¢r = —Py(¢) = div[ri(#)Ve] )

Eq. (7) is a diffusion equation with rate r1(¢)= 1-1/|V¢]|.
However, ri(¢)— —oo when |V¢| —0, which may cause
oscillation in the final LSF ¢ [14]. In [14], this problem is
solved by applying a new diffusion rate

sin(2z |[V@|)

[ ¥ v < 1
r2(¢)—[1_ﬁ’ Vol = 1 ®)

Xie [9] also proposed a constrained level set diffusion rate as

r3(¢) =H,(IVél - 1) €

where H,(z) = (1/2)[1+(2/m)arctan(z/p)] and p is a fixed
parameter.

The three diffusion rates are illustrated in the left figure
of Fig. 1. We see that the diffusion rate in [3] constrains the
LSF to be an SDF, so does the one in [14] when |V¢| >0.5.
When [V¢| <0.5, the diffusion rate in [14] makes the LSF flat,
preventing the emerging of unnecessary peaks and valleys. The
diffusion rate in [9] changes smoothly from O to 1 and makes
the LSF tend to flat. The diffusion equation in Eq. (7) with
different diffusion rates can be combined into Eq. (4), resulting
in the following LSE equation:

P (x,1 = 0) = do(x)
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where Reg(¢) = adiv(r(@)Ve), r(¢) = ri($), ra(¢) or r3(¢),
and a is a constant. The Dirac functional d(¢) can be approx-
imated by the following two forms

50) 0, ZER, |zl > p an
1,p(2) =7 1 ,
P 3, [1 + cos (%)], |zl <p

1 p
Hn,(0) =— ————=,2€R 12
2,p() = p2+Z2 ( )

As shown in the right figure of Fig. 1, the support of J;,,(z) is
restricted into a neighborhood of zero level set so that the LSE
can only act locally. The evolution is easy to be trapped into
local minima. In contrast, d3,,(z) acts on all level curves, and
hence new contours can appear spontaneously, which makes
it tend to yield a global minimum [7]. Thus, 2 ,(z) is widely
used in many LSMs [6], [7], [8], [9], [10], [11], [12], [13].

Remark 1: Since the three DRLSE methods [3], [14], [9] can
be generalized into the same formulation defined in Eq. (10)
but with different force term F, in the following of this paper
we call them generalized DRLSE (GDRLSE). The GDRLSE
methods using r1(¢) [3], r2(¢) [14], and r3(¢) [9] are called
as GDRLSE1, GDRLSE2, and GDRLSE3, respectively. In our
experiments in Section V, F' will be constructed by constant
term and curvature term (Section V-B), edge-based force term
(Section V-C), GAC force term (Section V-D), and CV force
term (Section V-E), respectively.

3) Problems of GDRLSE: Although GDRLSE methods
have many advantages over re-initialization methods, such as
higher efficiency and easier implementation, they still have the
following drawbacks.

1) Limited Application to PDE-Based LSMs: In [14], Li
et al. claimed that GDRLSE2 can be readily extended to
PDE-based LSM. Similarly, GDRLSE1 and GDRLSE3
can also be extended to PDE-based LSM. However, no
experiment or theoretical analysis was presented in [14].
We found that these three methods cannot work well
for PDE-based LSE. The reason is as follows. When
applying GDRLSE methods to PDE-based LSE, we can
rewrite Eq. (3) as ¢ = Fr|V(¢)| + F|V(4)|, where
Fr = aV(r(@)Ve)/IV(4)| is the regularization force
that drives zero level set to evolve. When the zero level
set reaches the object boundary, the LSE force F will be
close to zero [2], [7], and this can make the zero level set
finally stop at the object boundary if the regularization
force Fg = 0 with r(¢) = 0 [47], i.e., |[V@| = 1| when
r(¢) = ri(¢) or ra(¢). However, when r(¢) = r3(¢),
no solution satisfies r(¢) = 0 (please refer to the left
image in Fig. 1). Thus, when the zero level set reaches
the object boundary, the LSF ¢ may not be an SDF
(i.e., |V¢| #1), making the regularization force Fgr be
nonzero, driving the zero level set continue to evolve,
and finally causing the boundary leakage problem. Our
experimental results in Section V-D also validate our
above analysis (please refer to Fig. 7 in Section V-D).

2) Limited Anti-Leakage Capability for Weak Boundaries:
As can be seen in the middle row of Fig. 2, when
using J1,, and edge-based force term, GDRLSEI [3],
GDRLSE2 [14] and our RD methods all can yield

Fig. 2. Example segmentation of image with weak edges. Top row: ground
truth. Middle and bottom rows: from left to right, we show the results
obtained by GDRLSEI (the code and test images are downloaded from
[53]), GDRLSE2, GDRLSES3, and the proposed RD method with edge-based
force term. Middle row: results obtained by using Dirac functional & p.
Bottom row: results obtained by using Dirac functional d p. Red curve:
initial contour. Blue curve: final contour. White solid lines: contours during
LSE.

a satisfactory segmentation without boundary leakage.
However, the good anti-leakage capability of GDRLSE1
and GDRLSE2 comes not only from their regularization
term, but also from the use of Dirac functional J,,
that restricts the force function to act only in a small
neighborhood of zero level set (see the red dotted line
in the right figure of Fig. 1). Nonetheless, the use of Jy,,
prevents the emerging of new contours, which may make
LSE fall into local minima. This is why d; , is not used
in the CV model [7]. If we use the Dirac functional 63 5,
the force function will act on curves at all levels, but this
will easily lead to boundary leakage (see the bottom left
figure in Fig. 2). The PDE-based LSE can also make the
force function act on curves at all levels by replacing
01,p with |[V@| [7]. By applying GDRLSE methods to
PDE-based LSE, it can also be found that the boundary
leakage will occur for objects with weak boundary (refer
to Fig. 7 in Section V-D). The method in [9] uses d7 ,
but employs a specific force term so that it can produce
good results for images with weak boundaries. If other
commonly used force terms are used, however, it can be
shown that the boundary leakage will easily occur (see
the third figure, bottom row, Fig. 2). The reason of bad
performance by using ¢, in GDRLSE methods is the
same as that by using |V¢| in PDE-based LSE.

3) Sensitivity to Noise: When the image is contaminated
by strong noise, the force term F in Eq. (10) will be
much distorted, and then the regularization term will
fail to keep the LSF smooth. Please refer to Fig. 8 in
Section V-E for examples.

III. REACTION-DIFFUSION (RD) BASED
LEVEL SET EVOLUTION

Since the zero level is used to represent the object contour,
we only need to consider the zero level set of the LSF
As pointed out in [18], with the same initial zero level
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set, different embedded LSFs will give the same final stable
interface. Therefore, we can use a function with different phase
fields as the LSF. Motivated by the phase transition theory
[54], [37], we propose to construct an RD equation by adding
a diffusion term into the conventional LSE equation. Such
an introduction of diffusion to LSE will make LSE stable
without re-initialization. We will show in Theorem 2 that the
stable solution of the RD equation is piecewise constant with
different phase fields in the domain €, and it is also the
solution of the LSE equation.

By adding a diffusion term “¢A¢” into the LSE equation
in Eq. (3) or Eq. (4), we have the following RD equation for
LSM:

¢ =eAp—1L(¢), xe QCR"

subject to ¢(x,t = 0, &) = Po(x) (1)

where ¢ is a small positive constant, L(¢) = —F|V¢| for PDE-
based LSM or L(¢) = —Fd(¢) for variational LSM, A is the
Laplacian operator defined by A(:) 2 > 62(-)/8xi2, and
¢o(x) is the initial LSF. Eq. (13) has two dynamic processes:
the diffusion term “eA¢” gradually regularizes the LSF to
be piecewise constant in each segment domain ;, and the
reaction term “—e~ ' L(¢)” forces the final stable solution of
Eq. (13) to L(¢) = 0, which determines ;. In the traditional
LSMs [17], [2], [18], [21], [7], due to the absence of the
diffusion term we have to regularize the LSF by an extra
procedure, i.e., re-initialization.

In the following, based on the Van der Waals-Cahn-Hilliard
theory of phase transitions [36], we will first analyze the equi-
librium solution of Eq. (13) when e—07 for variational LSM,
and then generalize the analysis into a unified framework for
both PDE-based LSM and variational LSM.

Theorem 1: Let Q C R", n = 2 or 3, be the domain of
the level set function ¢ and assume that E(¢) is an energy
functional w.r.t. ¢, the Euler equations of E(¢) and F(¢)
are the same, ie., Eg(¢) Fy(¢), where F(¢)
Ja E(@)dx.

Proof: see Appendix A.

For variational LSM, assuming that the L(¢) in Eq. (13)
is obtained by minimizing an energy functional E(¢), i.e.,
L(¢) = Ey(¢), then according to Theorem 1 we can obtain
the following energy functional F.(¢) whose gradient flow is
Eq. (13):

F@) = 5e [VoPax+ [ E@ax v
2 Ja ¢ Ja

We can use the Van der Waals-Cahn-Hilliard theory of phase
transitions [39] to analyze Eq. (14). Consider a dynamical sys-
tem composed of a fluid whose Gibbs free energy per volume
is prescribed by an energy functional E(¢) w.r.t. the density
distribution ¢(x): Q — R, subject to isothermal conditions and
confined to a bounded container Q C R”, which is an open
bounded subset of R" with Lipschitz continuous boundaries
[39]. The stable configuration of the fluid is obtained by
solving the following variational problem Py [34], [39]:

inf Fo(d) = fy E(@)dx

Py : [</>

(15)
subject to [, p(X)dx = m
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where m is the total mass. It is obvious that Py is a non-convex
problem. The Van der Waals-Cahn-Hilliard theory introduces
a simple singular perturbation &|V¢|*/2 with a very small
constant ¢ to ensure the uniqueness of the solution to Py. The
problem of Eq. (15) is then changed to

P, : { 11;f Fe(9)

subject to [, p(X)dx =m
where F.(¢) is defined in Eq. (14). The equilibrium solu-
tion of Eq. (13) is then the solution of P, in Eq. (16).
The T'-convergence theory has been used to study the problem
P, as e—07" [34], [38], [39], [55].

Consider the LSE equation (13) with L(¢) = Ey(¢), which
is the gradient flow of F.(¢) in Eq. (14), there exists an
important theorem as follows.

Theorem 2: If there are k >2 local minima cy, .. ., ¢x for the
energy functional E(¢)>0 in the domain Q such that { E(¢;) =
0,i =1,...,k}, then for the point x where the initial function
¢o(x) is in the basin of attraction of c;, the solution ¢(x, ¢, €) of
P, will approach to ¢; as e—07T, which is also the equilibrium
solution of the LSE equation ¢; = —Ey (¢) with the same
initialization ¢(x, t = 0) = ¢Po(x), i.e.,

(16)

lim
t—+00,6—01

k
Px,1,8) = D cii(x) (17)
i=1

where y;(x)€{0,1} is the characteristic function of set S;
{x|po(x)e Bi,i =1,...,k}, and B; is a basin to attract ¢(X,
t,e) to ¢j. |

Proof: see Appendix B. [ ]

Theorem 2: can be readily extended to the case when
E(p) is replaced by a function L(¢) that is not the gradient
of a potential, where the k local minima ¢y, ck of energy
functional E(¢) are replaced by the stable zeros of L(¢). The
proof for Theorem 2 can be found in Appendix B and we have
the following remark.

Remark 2: For PDE-based LSM, we have L(¢) = —F|V¢|
in Eq. (13). It is obvious that any constant ¢ # 0 can
make L(¢) = 0. As claimed in Remark A-2 in Appen-
dix B, if there exist k zeros for L(¢) in domain Q, the
final equilibrium solution of Eq. (13) can be represented by
P(x,t,¢8) = Zf:l ci xi(x), =07, where ¢; is determined by
the initial LSF ¢ (x). Therefore, the above theoretical analysis
is applicable to both PDE-based LSM and variational LSM,
whose LSE equations can be unified into the RD framework
in Eq. (13).

IV. IMPLEMENTATION

From the analysis in Section III, we see that the equilibrium
solution of Eq. (13) is piecewise constant as ¢—0T, which
is the characteristic of phase transition [54], [38]. On the
other hand, Eq. (13) has the intrinsic problem of phase
transition, i.e., the stiff parameter ¢~ ! makes Eq. (13) difficult
to implement [42], [26], [56]. In this section, we propose a
splitting method to implement Eq. (13) to reduce the side effect

of stiff parameter £~ !.
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Algorithm 1 RD Based Level Set Evolution (RD-LSE)
1) Initialization: ¢" = ¢9, n = 0
2) Compute ¢"t1/2 as

¢V =" — An - L(p") (18)
3) Compute ¢"*! as
" =" + At - AP" (19)

where ¢" = ¢"t1/2,
4) If ¢"*! satisfies stationary condition, stop; otherwise,
n =n+ 1 and return to Step 2.

Fig. 3. LSE force analysis for RD and GDRLSE methods. (a) Possible
forces at different positions for GDLRSE methods. (b) In the RD method,
only the LSE force F drives zero level set evolution because we set the time
step for the diffusion term small enough to prevent the zero level set moving.
Red arrows: LSE force F. Blue arrows: regularization force Fpg.

A. Two-Step Splitting Method (TSSM) for RD

A TSSM algorithm to implement RD has been proposed in
[42] to generate the curvature-dependent motion. In [42] the
reaction function is first forced to generate a binary function
with values 0 and 1, and then the diffusion function is applied
to the binary function to generate curvature-dependent motion.
Different from [42], where the diffusion function is used to
generate curvature-dependent motion, in our proposed RD
based LSM, the LSE is driven by the reaction function, i.e.,
the LSE equation. Therefore, we propose to use the diffusion
function to regularize the LSF generated by the reaction
function. To this end, we propose the following TSSM to solve
the RD.

Step 1: Solve the reaction term ¢, = —& ™' L(¢) with ¢(x,
t = 0) = ¢" till some time 7, to obtain the intermediate
solution, denoted by ¢" /2 = ¢ (x, T});

Step 2: Solve the diffusion term ¢; = ¢A¢p, ¢(x, t = 0)
= ¢"T1/2 till some time Ty, and then the final level set is
¢t = ¢(x, Ty). Although the second step may have the risk
of moving the zero level set away from its original position, by
choosing a small enough 7; compared to the spatial resolution
(i.e., the number of grid points [6]), the zero level set will not
be moved [42], [6].

In Step 1 and Step 2, by choosing small 7, and Ty, we
can discretely approximate ¢"t1/2 and ¢"t! as ¢"t1/%2 =
o+ Atl(—e_lL(¢n) and ¢n+1 — ¢n+1/2 + At2(8A¢"+1/2),
respectively, where the time steps Af; and At represent the
time 7 and Ty, respectively. Obviously, we can integrate the
parameter ¢ into the time steps Afz; and Afy as Atfp <«
At1(—8_1) and At <« Ame, and hence, similar to the
diffusion-generated or convolution-generated curvature motion

[42], [44], [46], we only need to consider the two time steps
At and At, to keep numerical stability. The algorithm of RD
based LSE is summarized in Algorithm 1.

B. Numerical Implementation

1) Numerical Approximation for the Spatial and Time
Derivatives: In implementing the traditional LSMs [17], [2],
[21], the upwind scheme is often used to keep numerical
stability. By introducing the diffusion term, in the proposed
RD-LSE the simple central difference scheme [57] can be
used to compute all the spatial partial derivatives o(-)/dx;,
i =1,...,n, and the simple forward difference scheme can
be used to compute the temporal partial derivative ¢;.

2) Setting for the Time Steps Aty and Atr: Since Eq. (19)
is a linear PDE, the standard Von Neumann analysis [48],
[58], [57] can be used to analyze the stability for the time
step At,. Putting (/ﬁl”j = r"e! (€149 into Eq. (19), where
I = /—1 denotes the imaginary unit, we get the amplification
factor as

r=1+42An -[cos()) + cos(é) — 2] (20)

Therefore, we have 1-8A#, < r <1. By solving the inequality
[1-8Ap| <1, we obtain

0< Anh <025 1)

However, this is a relaxed constraint for A, because At also
controls the smoothness of LSF during the LSE in Step 1, and
a large A1 has the risk of moving the zero level set away from
its original position. Therefore, we should use a small enough
Aty compared to the spatial resolution (i.e., the number of grid
points [6]) so that the zero level set will not move [42], [6],
[46], and only the LSE force in L(¢") drives the zero level
set to evolve (please refer to Fig. 3(b)).

For the time step Atq, since L(¢") in Eq. (18) may contain
nonlinear terms, we cannot apply the Von Neumann analysis
for stability analysis. However, since the diffusion process in
Step 2 can make the LSF smooth while reducing to some
extent the numerical error generated in Step 1, we can easily
choose a proper At; to make the evolution stable. In all our
experiments, we set Af; = 0.1 and it works very well.

3) Discussion on the Evolution Speed: For the
re-initialization methods [20], [18], [21], [22], Eq. (5)
should be iterated several times to make the LSF be an SDF
while keeping the zero level set stationary. This is very time-
consuming [3]. The GDRLSE methods are computationally
much more efficient than re-initialization method. Refer to
Eq. (10), in each iteration the computation of GDRLSE
includes two components: the regularization term and LSE
term driven by force F. In each iteration of our RD method,
the computation also includes two similar components. The
only difference is that we split the computation into two
steps: first compute the LSE term, and then compute the
diffusion term. Therefore, the computation complexity of RD
is similar to that of GDRLSE methods.

However, the zero LSE speeds of RD and GDRLSE meth-
ods are different. J7 ,(¢) and |V@| are not zero in the
neighborhood of zero level set. For GDRLSE methods, when



264

20 40 60 80

(©)

100

Fig. 4. GAC model implemented by the proposed RD method on an image
with interior boundary. (a) Initial level set function. (b) Final level set function.
(c) Testing image. Blue circle: initial contour. There are three regions: A, B,
and C. (d) Middle slices of level set function during LSE. Red solid line:
middle slice of the final level set function, which is piecewise constant in
each region (A, B, or C). We set At; = 0.1 and A, = 0.001.

using 6(¢) = d2,,(¢) we can rewrite Eq. (10) as ¢, =
Fror, (@) + For,($), where Fr = aV(r($)Ve)/d,(¢)
is the regularization force that drives the zero level set to
evolve. When apply GDRLSE to PDE-based LSM, we can
use |V¢| instead of J(¢), and the similar analysis holds.
The zero LSE speed is determined by the total force (i.e.,
Fr + F). However, the signs of diffusion ratios of GDRLSEI
and GDRLSE2 (refer to r; and r; in the left figure of Fig. 1)
may be inverse for different LSFs during LSE, and this can
make the sign of regularization force Fg different from that of
the LSE force F (refer to Fig. 3(a)), and consequently reduce
the evolution speed. When the zero level set reaches the object
boundary, the LSE force F will be close to zero, and this can
make the zero level set finally stop at the object boundary if
Fr = 0. However, when force Fis zero, the regularization
force Fr may not be zero, making the zero level set continue
to evolve and finally causing the boundary leakage problem.
Such disadvantages also exist for GDRLSE3.

In summary, we cannot set a large time step for GDRLSE
methods with d ,(¢) or |V¢| in order to avoid boundary
leakage because the time step affects both regularization force
and LSE force. In all our experiments in Section V, we set
time step At = 0.1 for GDRLSE methods to alleviate the
boundary leakage. We set Af; = 0.1 for the first step of
our RD method, and set A, = 0.1 or 0.001 for the second
step of RD according to the noise level in the image. The
small time steps can prevent the zero level set from moving
[42], [6], and the zero LSE speed is mainly determined by
the force F in Eq. (18), making our RD method have better
boundary anti-leakage performance than GDRLSE methods
(refer to Fig. 3(b)). Overall, sometimes the zero LSE speed of
RD is faster than GDRLSE because the LSE force of GDRLSE
can be decreased by the regularization force; sometimes the
reverse is true because the LSE force of GDRLSE can be
increased by the regularization force.
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Note that in [3], [14], a large time step (e.g., At = 5)
is set for GDRLSE1 and GDRLSE2 methods, and the LSE
is very fast without obvious boundary leakage. However, the
good anti-leakage capability of GDRLSE1 and GDRLSE2
comes from not only their regularization term, but also the
use of Dirac functional d1,, that restricts the force function
acting only in a small neighborhood of the zero level set
(see the red dotted line in the right figure of Fig. 1). Our
experimental results also validate this (refer to Figs. 6-7 in
Sections V-C and V-D). However, based on our experiments
using the codes downloaded from [53] with default settings, it
is found that there still exists the risk of boundary leakage
even the Dirac functional d1,, is used in GDRLSE1 (e.g.,
the middle left image in Fig. 2) and GDRLSE2 if a large
time step such as At = 5 is set. Some examples are
given at http://www.comp.polyu.edu.hk/~cslzhang/RD/RD.
htm. Therefore, we set a small time step At = 0.1 in all our
experiments to alleviate the boundary leakage of GDRLSEI1
and GDRLSE2.

C. Consistency Between Theory and Implementation

For images contaminated by strong noise, the diffusion rate
should be set a little large to remove noise, and hence the final
LSF tends to be piecewise smooth (see the bottom left second
figure in Fig. 8 for an example). This does not contradict
Theorem 2, which indicates that the final LSF tends to be
piecewise constant (stronger than piecewise smooth), because
the diffusion rate is assumed very small in Theorem 2. On
the other hand, as long as the time step Af, is chosen small
enough compared to the spatial resolution, it can be guaranteed
that the zero level set will not move [6]. Since the interface
evolution is independent of the initial functions provided that
their zero level sets are at the same position [18], the zero
level set of the final steady state solution by the proposed RD
method will keep unchanged.

As an example, we use the proposed RD method to imple-
ment the GAC model, and then apply it to an artificial image
with interior boundary. The results are shown in Fig. 4. We
set Ar; = 0.001, which is small enough to ensure the final
LSF to be a piecewise constant function. It can be seen from
Fig. 4(d) that the LSF is gradually tending to be piecewise
constant so that the value in each region is nearly a constant
during LSE, which is consistent with Theorem 2.

For region-based models such as the CV model [7], since
the data terms often take large values which weaken the effect
of diffusion term, we can set a large diffusion rate to keep
the LSF smooth during LSE, and hence the final LSF is often
piecewise smooth (see Fig. 8 for examples).

V. EXPERIMENTAL RESULTS
A. Setup of Experiments

In our experiments, all the competing methods use the same
level set model, while the only differences are the different reg-
ularization terms used in them. As explained in Section II-B2,
we use GDRLSE1, GDRLSE2 and GDRLSE3 to represent
the methods in [3], [14] and [9], respectively. The level set
models used in our experiments are summarized in Table I.
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Top row: the final LSFs. Bottom row: the middle slices of the LSFs in iterations. From left to right: results obtained by RD method, reinitialization

method, and the direct implementation without reinitialization method. We set At = Aty = 0.1.

Fig. 6. Segmentation results on two left ventricle images obtained by using
edge-based variational LSM with J; ,. From left to right: results obtained by
RD, GDRLSE1, GDRLSE2, and GDRLSE3. Red circles: initial contours.
Blue solid curves: final contours. The parameters are set as A#; = 0.1,
Aty =0.001, a =02, A=1, and v = 3.5.

In the following experiments, in most cases we initialize the
LSF to be a binary function whose values have positive and
negative signs respectively inside and outside the contour. We
set p = 0.5 for GDRLSE3 as suggested by [9] and p = 1
for other methods. Other parameters are set according to the
different experiments. The Matlab source code of the proposed
RD method and more experimental results can be found in
http://www.comp.polyu.edu.hk/~cslzhang/RD/RD.htm.

We first apply the RD method to PDE-based LSM to
demonstrate its superior performance to re-initialization meth-
ods; second, we apply it to edge-based variational level set
models and compare it with GDRLSE methods for images
with weak boundaries; third, we apply the RD method to
classical GAC model [2] and the CV model [7] in comparison
with GDRLSE and representative LSMs with re-initialization;
finally, we compare RD with GDRLSE methods for the edge-
based variational level set model, and the region-based CV
model in efficiency. The advantages of our RD method over re-
initialization methods and GDRLSE methods are summarized
as follows.

1) The RD method can keep the LSE process stable for
both variational LSM and PDE-based LSM (refer to
Figs. 5 in Section V-B).

2) In the edge-based models, for variational LSM with 63 ,,
in general our RD method has better boundary anti-
leakage ability than GDRLSE methods (refer to Fig. 6
in Section V-C). For the PDE-based GAC model, the
boundary anti-leakage performance of our RD method is
much better than re-initialization method and GDRLSE
methods (refer to Fig. 7 in Section V-D). This is because
in RD-LSE only the LSE force F drives the zero level
set to evolve (see Fig. 3(b)), while for GDRLSE methods
the regularization force Fg may be nonzero at the object
boundary and drive the zero level set passing the object
boundary (see Fig. 3(a)).

3) For region-based LSM such as the CV model, our
RD method has better anti-noise performance than the
re-initialization method and GDRLSE methods (refer to
Fig. 8 in Section V-E).

B. Experiments on PDE-Based Level Set Method

We consider a simple case of shrinking a circle with force
function F = 1 according to Eq. (3). The initial LSF is
do (x1,x2) = (x1 —50)> + (x2 — 50)> — 30. We set the
time steps as Af; = Aty = 0.1, and the spatial steps are
Ax1 = Axpy = 1. The number of iterations is 100.

The middle slices of the LSFs during LSE and the final
LSFs are shown in Fig. 5. We see that when the zero level
set moves to the center, the direct implementation without
re-initialization [18] leads to serious spikes, making the
computation highly inaccurate. In contrast, the proposed RD
method does not have such a problem, and the LSF can
always keep smooth during evolution, ensuring an accurate
computation. The bottom left figure of Fig. 5 also demonstrates
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TABLE 1
MODELS USED IN EXPERIMENTS. ¢ IS A CONSTANT, x IS THE CURVATURE OF LSF, g IS AN EDGE INDICATOR FUNCTION [2],

AND A, v, a, pt, A1, A2 > 0 ARE FIXED PARAMETERS

Section Force term F GDRLSE1 GDRLSE2 GDRLSE3 RD
V-B F=c - - - ¢t = F|Ve|
# = adiv [ @)Vl | b = adiv @)Vl | ¢ = adiv[r3(@)Ve]
: v (o Y8 _
V- | F=div () s ) +Foy, (@) +Foy, (@) 91 =Fo2p (9)
_ a4 Vo g g g

v F =div (g v b =advIn@VS] | = advin@Vel | ¢ =adiv @91 [, oo

+vg + FIV| + FIV| + FIVg|
F = aiv (1787

VE v i b= adV MOV | = adv ROV | = adv IOV |
-1 (1 — Cin(¢)) + Forp (®) + Fop (#) + Fop (#)
+ 2 (I - Cout(¢))2

Fig. 7.
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Segmentation results on a synthetic image [53]. From left to right: results obtained by reinitialization method [18], RD, GDRLSE1, GDRLSE2, and

GDRLSE3. Red curves: initial contours. Blue solid curves: final contours. We set parameters Aty = 0.1, Arp = 0.001, v = 0.5, and a = 0.2.

Fig. 8.

200

0] . o
200 L. e
400 400

200

s00 00

Segmentation results on a real image with noisy background [59]. From left to right: results obtained by reinitialization method [18], RD,

GDRLSEI1, GDRLSE2, and GDRLSES3. (a) Red curves: initial contours. Blue curves: final contours. (b) Final LSFs. We set the same parameters Az; = 0.1,
u=05x 2552, = 0, and A1 = 42 = 1 for all the methods, and set parameter A, = 0.1 for our RD method. For GDRLSE methods, we set parameter

o =0.2.

that RD will not move the zero level set by using a small
diffusion rate. The bottom middle figure in Fig. 5 shows the
results by traditional LSMs with re-initialization [2], [20],
[18], [21]. It is obvious that both re-initialization and RD
can ensure the evolution stable. However, RD has much less
computational cost and it is much easier to implement.

C. Experiments With Edge-Based Variational LSM

In [3], [14], the Dirac functional is approximated by Ji,,
and the force term is F = Adiv(g(|VI|)V@/|VP|)+vg(IVI]),
where A and v are fixed parameters and g(|VI]|) is an edge
indicator function. In Fig. 2, J1,, is used, and GDRLSE],

GDRLSE2 and the proposed RD lead to similar results.
As explained in Section II-B3, to validate more comprehen-
sively the performance of a method, other Dirac functional
should also be considered. In this sub-section, we approximate
the Dirac functional by d3,, and compare RD with GDRLSE
methods on images with weak boundaries. Our experi-
ments validate that the boundary anti-leakage performance of
GDRLSE methods is much affected by the Dirac functional.

Fig. 6 shows some segmentation results by RD and
GDRLSE methods for edge-based variational LSM with d5 ;.
The test images are two magnetic resonance images of the
left ventricle of a human heart. For the first image, both RD
and GDRLSE3 yield satisfying segmentation results without
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Fig. 9. Segmentation results on a noisy synthetic image with different level
set initializations. Red curves: initial contours. Blue curves: final contours.
We set the parameters Aty = 0.1, Ap = 0.1, 4 = 0.001><2552, v =0,
A1 = Ay = 1 for all images.

much boundary leakage, but GDRLSE1 and GDRLSE2 lead
to serious boundary leakage because the boundary of this
image is very weak and blurred. For the other image, both
RD and GDRLSEI generate satisfying results. However, for
GDRLSE?2 and GDRLSE3, the LSE falls into local minima
because the image data force terms are significantly affected
by the noisy objects.

D. Experiments With the PDE-Based GAC Model

In the LSE equation (refer to Eq. (3)) of GAC model [2],
there is F = div(g(|VI|)V¢/|Vp|)+vg(IVI|), where g(|VI|)
is an edge indicator function and v is a fixed parameter. The
LSE equation of GAC model is PDE-based. We adapted the
GDRLSE methods to the GAC model and compared them with
our RD method.

Fig. 7 shows the segmentation results on a noisy synthetic
image with weak boundaries. The re-initialization method
[18], [21] can keep the LSF smooth during LSE, and hence
reduce the numerical error to some extent. However, the re-
initialization will move the zero level set away from its original
position, resulting in boundary leakage [25]. (In order to
be consistent with the traditional LSMs [2], [15]-[17], [20],
[21], [7], we initialized the LSF to be an SDF for the re-
initialization method.) As shown in Fig. 7, the RD method
results in a very good segmentation without boundary leakage,
and the final LSF can be approximated as a piecewise constant
function with constant values inside and outside the contours.
This is again consistent with what is claimed in Theorem 2.
For GDRLSEI, some contours occur inside the object during
evolution because |V¢| acts on all level curves, making the
LSF evolve in the whole domain and produce false peaks
and valleys. For GDRLSE?2, obvious boundary leakage occurs.
This is also because in the LSE equation of GAC model
in Eq. (10), d(¢) is replaced by |V¢| which acts on all
level curves, leading to boundary leakage. Similarly, boundary
leakage occurs for GDRLSE3.

We also tested some images from the Coral dataset [59],
and the results can be found at the website associated with
this paper.

E. Experiments With the CV Model

The CV model [7] is a simplified Mumford-Shah model
[60], which assumes that the image is piecewise constant. The
LSE equation of the CV model is in Eq. (4), where F =
udiv(Vel |V p)-v-21(I = cin(@))*+ 2(I = Cour($))*, v =0;
A1,42 >0 are fixed parameters, c¢;,(¢) and c,,/(¢) are average
intensity inside and outside zero level set, respectively. The
Dirac functional is approximated by d;,, defined in Eq. (12).

In implementing the LSE equation, the re-initialization is
optional [7]. However, without re-initialization the LSF will
become unsmooth during LSE, especially when the image is
noisy, and hence serious numerical error can occur. Therefore,
in the following experiments, we mainly compare the RD
method with the re-initialization method [18] and the three
GDRLSE methods.

1) Experiments on Noisy Images: Fig. 8 shows the seg-
mentation results on a real image with noisy background. The
noisy background results in big numerical errors for methods
without re-initialization, making the LSF fail to evolve stably.
For the re-initialization method [18], it fails to re-initialize the
LSF to be an SDF because of the strong noise. As shown
in the left second column of Fig. 8, the RD method can still
yield desirable results, and the final LSF keeps smooth. This
is because the diffusion procedure in the second step of our
RD algorithm can reduce the error produced by the LSE in
the first step effectively. Since we used a large diffusion rate
Aty = 0.1, the final LSF is nearly piecewise smooth. The
GDRLSEI1 method falls into local minima because the noisy
background makes the regularization term invalid, and there
exist some spikes in the final LSF. The GDRLSE2 method
yields similar results to GDRLSEI, because the large gradient
of the LSF caused by the noisy force term makes the two
different regularization terms in GDRLSE1 and GDRLSE2
perform nearly the same (please refer to the definitions of r|
and r; in Eq. (7) and Eq. (8), respectively, and we can see that
when |V¢| is large, r1 and ry are the same). For GDRLSE3,
the final segmentation result is very noisy because the diffusion
rate r3(¢) = H,(|V¢|—1) changes smoothly from O to 1,
which limits its regularization capability. More experimental
results on some real images can be found in the website of
this paper.

2) Demonstration of Global Minimum: To further demon-
strate that our RD method with the CV model can reach the
global minimum while being robust to level set initializations,
we apply it to a noisy synthetic image with different level
set initializations, as shown in Fig. 9. The zero contours can
be set outside the objects, around all the objects, cross some
objects or even inside one object. Although these initializations
are very different, the final contours are almost the same,
which validates that our RD method can robustly evolve to
the global minimum of the energy functional, leading a good
global segmentation.

FE. Efficiency Experiments

At last, let’s compare the efficiency of our RD method
with other GDRLSE methods in terms of converged iterations
and CPU time. All the competing methods are run under
Matlab R2010a programming environment in a desktop with
Windows XP OS, Pentium Dual-Core 2.10 GHz CPU and
1.95 GB RAM. From our extensive experiments, we observed
that only the edge-based models with Dirac functional dy,,
can yield good results for most GDRLSE methods. Moreover,
by using the CV model the GDRLSE methods can lead to
good results. Therefore, we evaluate the efficiency for edge-
based models with Dirac functional J;,, and the CV model.
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TABLE 1T
ITERATIONS (ITER) AND CPU TIME (IN SECONDS) BY RD AND GDRLSE METHODS. THE VALUES IN BOLD REPRESENT THE BEST RESULTS
Image 1 | Image 2 | Image 3 Image 4 | Image 5 | Image 6
Methods Size: 100x 100 pixels Size: 96x 101 pixels
Edge-based model with Jy CV model
Time(s) Iter Time(s) Iter Time(s) Tter Time(s) | Iter | Time(s) | Iter | Time(s) | Iter
RD 4.8 500 5.0 520 5.8 600 4.8 150 5.1 160 5.1 160
GDRLSE1 6.2 550 6.5 580 6.7 590 5.1 150 9.3 200 10.9 230
GDRLSE2 9.3 630 9.7 660 10.1 690 4.7 130 11.4 200 12.9 230
GDRLSE3 14.2 1000 17.0 1200 17.8 1250 4.0 130 18.1 210 68.9 800
Motivated by the convolution-generated curvature motion
[43]-[46] in phase transitions, the diffusion procedure in our
@ TSSM algorithm can also be replaced by convolving any
positive, radically symmetric kernel with a small enough
b width. Actually we have used a Gaussian kernel to regularize
o k o k the level set function in our previous work [12]. In our previous
i L work [13], we utilized a constant kernel to regularize two level
H = H s set functions and achieved promising results. This implies that
B the RD method can be readily extended to multiphase level set
Fig. 10. (a) Clean image (image 1) and noisy images with Gaussian noise method based on the theory of phase transitions in mixtures

with zero mean and standard deviation ¢ = 0.001 ((image 2) and standard
deviation ¢ = 0.005 (image 3). (b) Clean image (image 4) and images with
Gaussian noise of zero mean and standard deviation ¢ = 0.01 (image 5),
o = 0.05 (image 6).

It should be noted that different parameter settings and level
set initializations will affect much the efficiency of LSE. For a
fair comparison, we choose the synthetic images in Fig. 10 for
evaluation since all the competing methods can yield favorable
results on them. We tune the parameters for each method so
that their best results can be obtained. The comparison results
are illustrated in Table II. It can be seen that in average
the RD method achieves the best performance in terms of
both iterations and CPU time. In summary, the proposed RD
method has high computational efficiency while having high
segmentation accuracy and robustness.

VI. CONCLUSION

In this paper, we proposed a reaction-diffusion (RD) based
level set evolution (LSE), which is completely free of the
re-initialization procedure required by traditional level set
methods. A two-step-splitting-method (TSSM) was then pro-
posed to effectively solve the RD based LSE. The proposed
RD method can be generally applied to either variational
level set methods or PDE-based level set methods. It can be
implemented by using the simple finite difference scheme. The
RD method has the following advantages over the traditional
level set method and state-of-the-art algorithms [3], [14], [9].
First, the RD method is general, which can be applied to the
PDE-based level set methods and variational ones. Second, the
RD method has much better performance on weak boundary
anti-leakage. Third, the implementation of the RD equation is
very simple and it does not need the upwind scheme at all.
Fourth, the RD method is robust to noise. The experiments
on synthetic and real images demonstrated the promising
performance of our approach.

of Cahn-Hilliard fluids [36].

APPENDIX A
PROOF OF THEOREM 1

Theorem 1: Let Q C R", n = 2 or 3, is the domain of
the level set function ¢ and assume that E(¢) is an energy
functional w.r.t. ¢, the Euler equations of E(¢) and F(¢) are
the same, i.e. E4(¢) = Fy(¢), where F(p) 2 Jo E(@)dx. m

Proof: Tt is very easy to validate this theorem. The energy
functional E(¢) is a constant when ¢ is chosen. Therefore,
F(®) B Jo E(@)dx= E(¢)Sq, where Sq is the area of the
domain Q which is a constant. Thus, it is easy to yield the
conclusion Ey(¢)= Fy(). |

APPENDIX B
PROOF OF THEOREM 2

Theorem 2: If there are k>2 local minima cy, . . ., ¢ for the
energy functional E(¢)>0 in the domain Q such that { E(c;) =
0,i =1,..., k}, then for the point x where the initial function
¢o(x) is in the basin of attraction of ¢;, the solution ¢(X,t,¢) of
P will approach to ¢; as e—07T, which is also the equilibrium
solution of the LSE equation ¢; = —Ey (¢) with the same
initialization ¢(x, t = 0) = ¢po(x), i.e.,

lim
t—+00,6—01

k
P(x,1,8) =D ciyi(x)
i=1
where y;(x)€{0,1} is the characteristic function of the set
= {X|¢po(x)e Bj,i = 1,...,k}, where B; is a basin to
attract ¢ (x,t,¢€) to c;. |
Proof: The proof of Theorem 2 is mainly motivated by [54].
The LSE equation for Eq. (16) is

[¢t =eAp—L1E4($), xeQCR"

subject to ¢(x,1 =0, &) = ¢p(x) @2)
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where Ey(¢) denotes the Gateaux derivative (or first variation)
of the energy functional E(¢) [47]. We assume that E(¢) and
the boundary 0Q are sufficiently smooth. Since we are only
interested in the case when ¢—0%, by introducing the new
time variable © = t/e and using Taylor’s expansion w.r.t. €,
we can write ¢ in the form

P(x,t,¢) =v(x,7,8)
=0vo(x,7) +evi(x,7) + 821)2()(, )+ 0(83) (23)

The derivative of Eq. (23) w.r.t. the time ¢ is as follows

10v 1 (oo ov ov
:_(_0 o1 200

$= o ot ot ot

£ 0T

+0( 3)) (24)

Putting Eq. (24) into Eq. (22), we obtain 8“’2 + }T %“TO + “" +

0(e?) = eAgp — lE¢,(¢>) Letting e—>0+and comparmg “the
coefficients of the power of ¢ in both sides, we obtain

% = —E4(vo)

Since for Ve, ¢(x,t = 0,&) = ¢o(x) = vo(X,7)+evi(X,7)+

e202(x,7)+0(&%), comparing the coefficients of the power
of ¢, we have vo(x, 7 = 0) = ¢o(x), v1(x,7 = 0) =

(25)

x,t =0 =0.

Rearranging Eq. (24), we obtain

801 1 ovg 1
=¢p——————0()=¢ + — E¢(UO) —0(e) (26)

ot g 0Ot

Putting Egs. (22) and (25) into Eq. (26), we obtain
H=e0d— 1 (Es) — Ey(00) —0G) )
e— 0t = af),‘ = —Eys(vo)v1

where Egs (¢) denotes the Gateaux derivative (or first vari-
ation) of E4(¢) [47], which is obtained based on the Mean-
Value Theorem in [61]. With the initial condition v{(X,7 =
0) = 0, we can get the unique solution of Eq. (27) as v1(x,7)
=0.

Putting v1(x,7) = 0 into Eq. (24) and rearranging it, we
obtain

0 10
2= ¢>t =2~ 06) (28)
T
Putting Egs. (22) and (25) into Eq. (28), we obtain
0 1
E=Ap+ 5 (Es@) + Es00) - 06)  (29)

ot

From Eq. (23), as g—>0+, ¢— vo, Eq. (29) can be re-written

as follows
ovy
— = Avg — Epy(v0)02

ot
with the initial condition v>(x,7 = 0) = 0.

Higher order terms in Eq. (23) can be obtained by proceed-
ing in the same way. We obtain v;(x, ) = 0, i >3.

In summary, ¢(x,t,&) = D()(X,T)+821)2(X,‘L'), where vo(X,7)

and va(x,7) satisfy the following equations, respectively

T2 = —Ey(v0)
vo(x, 7 = 0) = ¢p(x),x € Q

(30)

and

% = Avg — Eyp(v0)v2
02(x,7=0)=0,x € Q

Remark A-1: Suppose that E(¢) has k local minimizers
ci,...,ck. Then with each ¢; there is an associated basin of
attraction B; such that when the initial value vg(x, 7 = 0) is
in B; the solution vg(x,7) of Eq. (25) tends to ¢; as t tends
to infinity. Thus, Ao tends to zero as 7 increases, and then
Eq. (30) will tend to be dv2/0t = —Ey¢(vo)v2, subject to
v2(x,7 = 0) = 0, whose solution is v(x,7) = 0 as 7— o0.
We have

hrf P(x,7) = hm vo (X, r)+g2 hm va(x, 1) = ¢,
T—> T—>

if ¢0(X)€Bi,1=1,---,k- (3D
Therefore, we conclude

(/ﬁ(xta) = Zc,x,(x)

i=1

lim
I—>+oo,£—>

where y;(x)€{0,1} is the characteristic function of the set S; =
{x|¢po(x)€ Bi,i =1,...,k} and B; is a basin to attract ¢(x, t,
¢) to ¢;. Here c; is the equilibrium solution of the LSE equation
¢ = —Ey4(¢p) with the initialization ¢(x, t = 0) = ¢p(x). H

Remark A-2: As seen from the above proofs, we only
consider the zeros of Ey(¢). Thus, we can readily extend the
results to the case that using a function L(¢), which is not a
potential, to replace E4(¢), and replacing the k local minima
c1, ..., ck of energy functional E(¢) by the zeros of L(¢). B
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